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1. INTRODUCTION

This report covers work carried out under the support of the
AFOSR, under contract 89-0261, during the three year period January

1, 1989 until December 31, 1991. This three year project was a natural

continuation and extension of similar work supported under contracts

83-0068, 84-0104, 85-0384 and 87-0298. The research program is cen-
tered on the study of various properties of random fields (stochastic

processes whose "time" parameter is multi-dimensional) and includes
the development of the requisite theoretical foundation to enable the

application of these properties to specific modelling problems.

The last three years have been particularly successful, having seen
the completion of a number of projects that have been going on for

a while (in particular, the completion of a monograph on Gaussian

processes) and the commencement of some major new directions of

research. This makes the (hopefully temporary) lack of further sup-

port even more disappointing than it would normally be.

As one would expect, there will be a considerable overlap between
this final report and the previous two annual reports.
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2. ON RANDOM FIELDS

Random fields are stochastic processes, X(t), whose parameter, t, varies over some
general space rather than over the real line, in which case t is usually interpreted as
time. The simplest of these occur when the parameter space is some multi-dimensional

Euclidean space, and it is these fields that were at the centre of my research for a number
of years. Of these, the most basic arise when the parameter space is the two-dimensional
plane, so that we are dealing with some kind of random surface. When the parameter
space is three-dimensional then we have a field (such as ore concentration in a geological
site) that varies over space, while when the dimension increases to four we are generally
dealing with space-time problems.

In space-time problems it is clear that one of the parameters is qualitatively different
from the others, and so there is a natural tendency to denote this explicitly by writing
the random field as

X(t, x),

where t is now one-dimensional time and x an N-dimensional space parameter. Of
course, one could also write this as

X =(x) X(tx),

in which case one could consider X either as a random field on (N + 1)-dimensional
space, or, as a process in t, (one-dimensional) taking values X(-) in a space of N-
dimensional random fields. In the latter case, since "time" has once again become one-
dimensional, one can begin talking about Markov properties, diffusion processes (albeit
infinite-dimensional from the point of view of their state space), etc.

Both of the above views of random fields will appear in this report, with differing
methodologies and types of result appearing in each case. As well as this, random fields
over very general parameter spaces that have no Euclidean structure at all will appear,
with results of yet another nature.

Despite the different types of random fields that will appear in this report, there
are two common threads running through it. One is of a theoretical nature, and is a
result of my belief that despite the vast differences between many of these random fields,
there is much to be gained by placing all of them within as common conceptual and
mathematical frameworks as possible, and that this gain shows itself both in terms of
developing intuition and in terms of developing streamlined proofs. The second thread
is of a more practical nature, and comes from the fact that I believe that problems that
have no possible application are unlikely to be even of theoretical interest. Thus, whereas

most of the results in this report are not what one would normally call "applied", all
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the processes that I consider are related to real life modelling problems, and it is this,
I believe, that ultimately makes them interesting and, often, difficult. Wherever it is

possible to do so succinctly, the connection between theory and model will be described.

3

3



3. SPECIFIC PROJECTS

Much of my time over the past three years was dedicated towards the completion of

two major projects. The first of these was the completion of a monograph on Gaussian

processes described in the proposal. The second was the commencement of a major

project in the study of measure and distribution valued stochastic processes, which were

described there under the heading "random field valued processes". These two projects

are described in some detail in the subsections (b) and (c) following. Over the past
twelve months a good deal of effort has also gone into the more classical "level crossing

problems", which are of more immediate applicability and closer in spirit to the work
done under AFOSR support in previous years. One subsection is devoted to these.

A number of other problems that have also been looked are described in the final,
"miscellaneous", subsection.

Yet others are not mentioned in the report at all, as can be gleaned by noting that
the list of publications at the end of the report contains a goodly number of topics not

discussed at all.

(A) MONOGRAPH ON GAUSSIAN PROCESSES:

A project that demanded a considerable amount of my time over the first two years
of the grant period was the preparation of a monograph on the sample path continuity,

boundedness, and extremal behaviour of Gaussian processes on general parameter spaces.

This monograph appeared as Volume 12 of the prestigious Lecture Notes-Monograph

Series of the Institute of Mathematical Statistics.

The main theme running through this work is that Gaussian processes should be
studied in a general, unifying, framework, without particular emphasis being given to
the specific geometric structure of their parameter spaces.

I presented series of lectures based on these notes in Sweden (February 1988, 12

lectures) Technion (second semester 1988/89, 26 lectures), and gave shorter sets of 2-3
lectures on a number of occasions. There were also groups at a number of institutions, in-

cluding the University of California, Berkeley, and at the University of British Columbia,

Vancouver, that held workshops based on my manuscript.

A good idea of what the manuscript is about can be gleaned from the following

excerpt from the Preface.

"... on what these notes are meant to be, and what they are not meant to be.

They are meant to be an introduction to what I call the "modern" theory of sample

path properties of Gaussian processes, where by "modern" I mean a theory based on
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I
concepts such as entropy and majorising measures. They are directed at an audience
that has a reasonable probability background, at the level of any of the standard texts

(Billingsley, Breiman, Chung, etc.). It also helps if the reader already knows something

about Gaussian processes, since the modem treatment is very general and thus rather
abstract, and it is a substantial help to one's understanding to have some concrete

examples to hang the theory on. To help the novice get a feel for what we are talking
about, Chapter 1 has a goodly collection of examples.

The main point of the modem theory is that the geometric structure of the pa-
rameter space of a Gaussian process has very little to do with its basic sample path

properties. Thus, rather than having one literature treating Gaussian processes on the
real line, another for multiparameter processes, yet another for function indexed pro-

cesses, etc., there should be a way of treating all these processes at once. That this is in
fact the case was noted by Dudley in the late sixties, and his development of the notion
of entropy was meant to provide the right tool to handle the general theory.

While the concept of entropy turned out to be very useful, and in the hands of

Dudley and Fernique lead to the development of necessary and sufficient conditions for

the sample path continuity of stationary Gaussian processes, the general, non-stationary
case remained beyond its reach. This case was finally solved when, in 1987, Talagrand

showed how to use the notion of majorising measures to fully characterise the continuity

problem for general Gaussian processes.
All of this would have been a topic of interest only for specialists, had it not been

for the fact that on his way to solving the continuity problem Talagrand also showed us
how to use many of our old tools in more efficient ways than we had been doing in the

past.
It was in response to my desire to understand Talagrand's message clearly that these

notes started to take form...
I rather hope that what is now before you will provide not only a generally accessible

introduction to majorising measures and their ilk, but also to the general theory of

continuity, boundedness, and suprema distributions for Gaussian processes.
Nevertheless, what these notes are not meant to provide is an encyclopeadic and

overly scholarly treatment of Gaussian sample path properties. I have chosen material
on the basis of what interests me, in the hope that this will make it easier to pass on

my interest to the reader. The choice of subject matter and of type of proof is therefore

highly subjective."
The subjectiveness comes primarily from the fact that the examples and motivation

of the monograph come from the area of set indexed empirical processes.
The contents page of the monograph is as follows:
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(B) SUPER PROCESSES AND DENSITY PROCESSES:

The general area of infinite dimension diffusions is one of the most important and

vital areas in Probability and Stochastic Processes today. For the first time since the

introduction of interacting particle systems over a decade and a half ago, the theory of

Markov and related processes has found a totally new family of processes that not only

are of intrinsic interest, but require the kind of major extensions of an existing body of

knowledge that rejuvinate mathematics and mathematicians. That this is the case can

be seen from the calibre of the people now developing this area in the U.S. and Canada,

and the flurry of conferences and sessions being dedicated to this topic. There is no

doubt that this subject is about to blossom into the "bandwagon" of the early 1990's

in Probability and Stochastic Processes, and the results and techniques that have been

developed to date promise a very fruitful and rewarding ride.

One of the reasons that these processes were initially of particular interest to me is

the fact, noted in Section 1, that they can be considered either as stochastic processes in

one-dimensional time whose values are N-dimensional random fields, or as real valued
(N + 1)-dimensional random fields. Thus there was the natural challenge to see what
could be done with them from the latter point of view. This challenge become even more

interesting when, as time went by, it became clear that even the usual formulation was

interesting from a purely random fields point of view.

To describe what these processes are, we start with a particle picture based on

N > 0 initial particles which, at time zero, are independently distributed in R' , d > 1,
according to some finite measure m. We define a branching rate p > 0. Each of these

N particles follows the path of independent copies of a Markov process Y, until time

t = p/N.
At time p/N each particle, independently of the others, either dies or splits into two,

with probability I for each event. The individual particles in the new population then
2

follow independent copies of Y in the interval [p/N, 2p/N], and the pattern of alternating

critical branching and spatial spreading continues until, with probability one, there are

no particles left alive.

The process of interest for us is the measure valued Markov process

() X (A) Number of particles in A at time t}
N

where A E Bd - Borel sets in R,. Note that, for fixed t and N, Xf' is an atomic measure.
Note also that if p = oo there is no branching occuring.

It is now well known that under very mild conditions on Y the sequence {XN)N>I

converges weakly, on an appropriate Skorohod space, to a measure valued process which,
when p = 1, is called the superprocess for Y. We shall be interested primarily in the
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cases in which Y is either an Rd-valued Brownian motion with infinitesimal generator A,

or an d-valued symmetric stable process whose generator is the fractional Laplacian,
Aa : -(-A)a/ 2 , a E (0, 2). When a = 2 we define A 2 = A. Then in either of these

cases the corresponding superprocess, known, respectively, as a super Brownian motion

or super stable process, can be defined as the unique solution of the following martingale

problem:

For all 0 E C2(Rd), the space of all bounded, continuous, R-valued functions on R

with continuous first and second order partial derivatives,

(2) Z,(O) = X,(O) - m() -Xt(Ao),

is a continuous square integrable martingale such that Z0 = 0 and

(3) (Z.(€)), = jX'(02) ds.

(We have taken the obvious liberty here of denoting integration via f O(x) p(dx) = p(o)
for a measure i. Later, without further comment, we shall also write this as (4, P).)

When p = oc the situation is a little different, and Xt , as defined aboved, converges

with probability one to the absolutely continuous measure whose density xt(u) satisfies

the deterministic PDE 8xt(u)/Ot = Axt(u) with initial condition X0 = m. (This is

just the strong law of large numbers.) In this case we look at the processes

(4) 77t = N' t -EX(()},

where € E Sd = S(Rd), the Schwartz space of infinitely differentiable functions on Rd

decreasing rapidly at infinity, so that we think of q as a random (Schwartz) distribution

rather than as a (signed) measure. The sequence {tiN}N>1 also converges weakly. Its

limit is called the density process corresponding to Y, and it satisfies the the stochastic

partial differential equation (SPDE)

(5) = lA4)+ Vr2_Wt(A,,p,),

where W is a mean zero, space-time Gaussian process with covariance functional

(6) EW(01 x ¢1)W('2 X 02 ) = j 1 (t)02(t)dt J 1 (X)02 (X)dx.

with 4i E S, and 0i E Sd. In this case the limit process q is Gaussian.
The results that I have obtained for superprocesses and density processes involve

their local and intersection local times.
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The occupation time process for a superprocess X is a further measure valued pro-

cess defined by

(7) Lt(B) = X.(B) ds.

This is clearly well defined for every Borel B E R". The local time process is, formally,
obtained by putting B = {x} in (7). More precisely, let f be a positive Cc function
supported in the unit d-ball, such that f, f(x)dx = 1. For each e > 0 set

(8) f =(X) =

and define

(9)L = lim X(f(- x)) ds.

The limit here, when it exists, may be taken in distribution or in £2, and is generally

independent of the choice of f.
In order to be more precise about when the limit exists, we shall restrict ourselves

to super Brownian and super stable processes. In these cases, not only can one establish
existence results, but there are nice evolution equations describing the temporal evolution

of the local time. To state these, we need to introduce the Green's functions

(10) G (x,y) = =(xy)dt

corresponding to the transition probabilities

p'(x,y) = pt(x - y) = / exp (-ip (x - y) - tpjja) dp,(2r.)dJIR

which, when a = 2, is equivalent to Brownian transition probability
(2 1 e2X-Yjj'/4t

A X )=pt(X, Y) =pt (X - ti) = (4Irx~dII/4t

Tie following result is in reference [11] in the lsit of publications following:

THEOREM. Let Xt be either a super Brownian motion in dimension d = 2,3 or a super
stable process in dimension d < 2a, with a E (1, 1] if d = 1. Then the local time Lt (9)
is well defined as an £2 limit for each x E Rd, is independent of the choice off, and L'
satisfies the following evolution equation for each ) > 0.

(11) LO = (G",Xo) - (G-,Xt)+A (G,,X.)ds + (G-, Z(ds)).

9



An identical equation holds for Lx if the function GA(.) on the right hand side of the

equation is replaced by GA(. - x).

We now turn to the issue of (self )-intersection local time (ILT). At a heuristic level,

this is a set indexed functional of the form

(12) ILT(B) = fB dsdt f (x -y)X,(dx)Xt(dy),

where B is a finite rectangle in [0, oo) x (0, oo) and 6 is the Dirac delta function. A more

precise definition involves a limit as in the case of the regular local time. There are two

qualitatively different cases that have to be considered in a rigorous formulation. The

first, and by far the simpler case, arises when the set B does not intersect the diagonal

D = {(t, t) : t > 0}. This case has been considered in detail in Dynkin for quite general

superprocesses. The more difficult case, in which B n D : 0, requires a renormalization

argument. To set up the renormalization, note that the distributional equation

(14) (-A,, + A)u = 6,

where 6 is the Dirac delta function, is solved by u = G'. That is, for every test function

: E Sd,

S((-A. + A)G')(x)cp(x)dx = 'p(0).

Set G'A = G,*f,, where "*" denotes convolution, and define a new approximate,

renormalized ILT by setting, for every 'p E Sd,

A(p jdtjfods(()fjx - y), X.(dx)Xt(dy))Tt

(15 ) - ( '(x)G\(x - y), Xt(dx)Xt(dy))dt.

Then the following result is in [10]:

THEOREM. Let Xt be a super Brownian motion or super stable process, and let -Y,(T, 'p)

be its approximate renormalized intersection local time as defined by (15). If d = 4 or 5 in

the Brownian case, or d/3 < a < d/2 in the stable case, then for all A > 0, all T E (0, oo)

and all p E Sd, -,(T, V) converges in £2 to a finite limit -y(T, p) as e --+ 0 which we call

the renormalized ILT of Xt, and which is independent of f. Furthermore, 7YA has the

following representation in terms of the process Xt and the martingale measure ZI:

~~y"(T,(G\ =j j(x - y)'p(x), X, (dx)) ds}I Z(dt, dx)

+AjT dtj Ids (G-\(x - y)'p(x), X.(dx) Xj(dy))

(16) 1 (G\ (x - j)'p(x), X, (dz) XT(dy)) dt.
0( 10



Except for the Brownian case in the plane, all parts of the theorem are also true for

A = 0. In this case, there are only two terms on the right hand side of (16).

The situation for density processes is somewhat different to that of superprocesses,

since here the process is a distribution rather than a measure. In this case, we would

like to use the following expression to define a new S' valued stochastic process, which

we would like to serve as the intersection local time process in this case:

(17) jo du jo dv J,4 f('9u X77)(b(x - M) O/4x) dxdy.

Here 77,, x ii,, is the usual product of distributions.

When d = 1 and a > 1 this is quite simple, for then the distribution fo 17, ds

has function form: i.e. There exists a local time Lt(x) for 77, so that (17) is given by

f& (Lt(x))24 (x) dx. In general, however, one cannot make mathematical sense out of

(17) without introducing a certain renormalisation. For this, unfortunately, we require

some notation.

Let G1, G 2 be a two zero mean, but otherwise completely general, Gaussian vari-

ables. We define their Wick product as : G1G2 := G1 G2 - EG1 G2. Equipping Sd with

the usual topology, let A2d be the dense subset of S2d made up of functions of the form

N

(19) ON(X1,X2) = (X),
:=l

where lj)(x) E Sd. If 771,772 are Gaussian distributions on S 2 then we define the corre-

sponding Wick product : 771 X 772 : on S2d by setting

N

(7 : ~X 772 : )(ON) = :77 (Otj)) 772 (02))

for test functions of the form (19) in A2d and then extending to all of S2d. That this is

legitimate is standard fare in the theory of Gaussian distributions.

We are now in a position to make sense out of (17). For f, f[ as before, 4 E Sd, and

t > 0 set

(20) = dtfdt 2 (:, X 17t, : )(O(XI )f.(X2 -X ))•

The following result is from [12], and has antecedents in [9]:
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THEOREM. Let ?I be the density process corresponding to either a Brownian motion (a =

2) or index a symmetric stable process in Rd. Assume d < 2a. Then the approximate

ILT's -y, (f : t, q$) converge in £C2 as e --* 0. The limit random process -(t, 0) is independent

of the function f, and is called the ILT process for ?It.

Furthermore, for all A > 0, the limit -y (which itself is independent of A) satisfies the

following evolution equation:

A t )=2A j du j dv (: 77 x 17,(' (x - y)4O(y))

(21) - 2 jdu(: 7t x -q :)(GA(x 0-0())

+2 1 du (: , x 7 :)(G\(x -y)¢(y))

+1 4 j J u(A., 12G\(x -. )6(.)) du W(dx, ds).

Further work in this area is continuing apace. In particular, I am currently involved

in trying to piece together deeper understanding of local and intersection local times.

For example, it follows from the above and related results that the super Brownian

motion has a local time up to three dimensions, an intersection (over disjoint time sets)

local time up to dimension seven, and a renormalised self-intersection local time up to

dimension five.

On the other hand, the branching Brownian motions that, in the infinite density

limit, provide a particle picture for the super Brownian motion have a local time in only

one dimension, an intersection local time up to three dimensions, and a renormalisable

self-intersection local time only in dimensions one and two.

What is of significant interest is the "dimension gap" between the particle picture

and the superprocess, and a paper is under preparation that shows how to explain this

gap in terms of weak convergence of functionals of the finite system to functionals on

the superprocess.

The problems raised here are related to the construction of measure valued processes

with singular interactions and a general problem of the comparative richness of the class

of £L2 functionals on superprocesses when compared to those on the underlying Ra?-valued

Markov processes.

12



(c) VISUALISATION OF SUPER PROCESSES:

As is obvious from the preceeding section, superprocesses and their ilk are extremely

technical objects. Furthermore, despite the significant effort currently being expended

on the theoretical study of measure valued diffusions, they have yet to generate much

interest among applied researchers. There are, I believe, two basic reasons for this.

The first is that the literature is extremely technical, and beyond the reach of all but a

relatively small group of researchers. This problem will certainly solve itself as expository

papers and monographs start to appear. The second problem, however, is somewhat

more basic, and lies in the fact that even fewer researchers have actually "seen" what

these processes look like, and until one can show a user of stochastic processes what

a "theoretical product" looks like, it is rather difficult to convince him to purchase it.

Hence the interest in computer generation.

I received support from the Israel Academy of Sciences for a project of this nature,

and have obtained an IBM RS6000 graphics workstation to carry out this project. The

following page shows a picture of several time snapshots in the evolution of a measure

valued process that began as a unit mass at the center of the square that spreads out in

time. The height of the surface indicates the local mass of the measure, and the left hand

pictures show contour lines. What is of interest is the uneven spread and "clumping"

phenomenon. I have developed programs that show this evolution in real time and for a

number of different processes.

It is important to note that computer generation of these rather complicated pro-

cesses has more than a mere descriptive use. They have already led to the discovery

of new properties of measure valued diffusions that have, to this point, escaped the

attention of theoreticians. They will also, I hope, lead to real applications.

13



A TEMPORALLY EVOLVING SUPERPROCESS

I

a m

a ~ 3 - 0*
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(D) LEVEL CROSSINGS:

Over the past twelve months I have been involved with two projects related to level

crossings of stochastic processes.
The first, joint with Murad Taqqu and Gennady Samorodnitsky is about station-

ary, harmonisable, symmetric, a-stable (SaS) stochastic processes {Xt, t _ 0}. These

processes have generated considerable interest over the past few years, primarily as a
family of structurally Gaussian-like processes that provide good models for long tailed

processes.
Let C,,(T) denote the number of crossings of the level u by such a process in during

the time interval [0, T]. Our primary interest lay in calculating EC(T). Since X is
assumed stationary, it is immediate that ECU(T) = TEC,(1), and so we need only

study C, := Cu(1).
The problem of having good information about ECu is of major importance in

terms of applying SaS processes in real life problems. There is probably no result as

fundamental to the application of Gaussian processes as the famous Rice formula

E rk R(I) ) exp(-u 2/2R(O)).

Without an analagous result for stable processes, many modelling applications of these
processes cannot even begin.

It is reasonably obvious that it will be impossible to find a closed form expression
for ECu, since this (except for some very special cases) is even impossible for the much

simpler stable densities. Thus bounds and approximations are the order of the day.
Our starting point is the the fact that stationary, harmonisable SaS processes can

also be represented via the following infinite sum:

x(t) = (Cb- IAo)1/a 1: r-i/a (G l) cos(tAk) + G 2 ) sin(tAk)).
k=1

The {G(')O1, i = 1,2, are independent sequences of i.i.d. standard normal variables.

{k} k is a sequence of arrival times of a unit rate Poisson process, so that {rk+I -

rk}k is a sequence of i.i.d. standard exponentials. {Ak}k is a sequence of i.i.d. random
variables with distribution function F(A)/Ao where A0 := F(oo). The four sequences are

independent of one another. Finally, the constants are given by

C' = (j X sin x dx)

= (1 - a)(r(2 - a)cos(v/2))' if a 6 1

[2/r if a= 1.

ba 2a/ 2r(1 + a/2).
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The above representation is crucial for the study of EC.. Note that if we condition

on the {rL} and {Ak) sequences, then what remains is a mean zero, stationary, Gaussian
process with covariance function

00

R(t) = (AoCo/bo) 2/- E rk 2/ , cos(tAk).
k=1

Rice's formula gives us the precise form of the level crossing rate for the conditional

Gaussian process as

00o A2 -2/a-1/2 _ 2

E{Cf{rk},{Ak}}= 1(l k= Ak k  / exp{ _T 00r-2/a Y 2A2 /aoo -r2/ol
rzk=1 rk 2-.0 k1r

where -y := (C°/bo) 1/ ° .

There seems to be no possibility of explicitly evaluating the remaining expectation

here. There are, however, a number of paths that one can take that lead to useful results.
The first obvious path, which seems at first one of desperation, is to look at the

behaviour of ECu as u --+ oo. Given that more is known about the tails of stable random
variables than about the central parts of their distributions, it is natural to hope that

something can be done for this case. Our main result is:

THEOREM. Assume ECo < oo. Then

lim u*EC, ,

It turns out that this result is of far more than theoretical interest, since the asymp-
totic formula inherent in the Theorem, viz.

EC, A1Co _
ECU u'

provides a remarkably good approximation to EC, once u is of the order of magnitude

of the highest quartile of the distribution of Xt. This is shown by way of examples,

including an explicit evaluation of EC, for a stationary process and a combination of

analytic and Monte Carlo techniques for some others.
We also have upper and lower bounds for EC, that hold for all u and which, unlike

previous results in the area, also hold for all a and are of the correct order of magnitude

for large u.

In another piece of work with Tamar Gadrich, we have studied the structure of level

crossings for non.stationary Gaussian processes X(t), -oo < t < oo with mean m(t)
and known but general covariance function. We also have explicit expressions for the

16
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Slepian model process of nonstationary Gaussian processes following level crossings and

local maxima and a detailed analysis of the high level case.

Two typical results are as follows:

(i) Given a u-upcrossing at time t = 0, X(t) has the same finite-dimensional distribu-
tions as the process

.(t) = k(t) + mt + Aj(Z - rho) + Bt(u - mo)

where k(t) is a zero mean continuously differentiable Gaussian process independent of Z

and with a known, but complicated, covariance function. Both A and B are deterministic

functions depending on the covariance function of X. The random variable Z has the

density function:
Yz(-(z)w)

where:
O(X) =; C 2

22

is the standard normal density function, and 4(x) is the corresponding distribution

function. y and w are known constatnts.

(ii) Given a local maximum of height u at t = 0, X(t) has the same finite-dimensional

distributions as the process

n(t) = L(t) + m, + Ct(V - ?ho) + Dt(u - io) - rhoE,

where L(t) is a zero-mean continuously differentiable Gaussian process independent of V

again with known covariance function. The random variable V has the density function:

fV(V) ~ ~ 1II p~ - v 2t iO + -,/2t2 ) I"
fv v)= (fi,) 2 2- 1~ 'vn o + -r_27

Again C, D and E are deterministic functions depending on the covariance function of

X and C2 is a known constant.
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(E) MISCELLANEOUS:

Among the papers that appear in the list of publications below but do not relate to
any of the topics discussed above, here are some details:

Paper [4] paper grew out of a joint project with Mike Marcus (City University of New
York) and Joel Zinn (Texas A& M), on limit theorems for the local times of independent
Markov processes, and the so called "isomorphism theorem" of Dynkin linking Gaussian

and Markovian processes. While Marcus and Zinn were visiting the Technion, we began
working on an empirical/Gaussian process problem, and got sidetracked on something

else.

The problem we studied is described in the following excerpt from the abstract of

[4]:

"Let { Xt, t > 0 1 be an Rd-valued, symmetric, right Markov process with stationary

transition density. Let { X1, t > 0 } denote the version of X, killed at an exponential
random time, independent of Xt. Associated with Xt is a Green's function g(x, y), which

we assume satisfies 0 < g(x,x) < oo for all x and a local time { L.,x E Rd }. It follows
from the so-called isomorphism theorem of Dynkin that L, has continuous sample paths
whenever { G(x), X E Rd }, a Gaussian process with covariance g(x, y), does. In this

paper we use Dynkin's theorem to show that L. satisfies the central limit theorem in the
space of continuous functions on R" if and only if G(x) has continuous sample paths.
This result strengthens a result of Adler and Epstein on the construction of the free

field by means of a central limit theorem involving the local time, in the case when the
local time is a point indexed process. In order to apply Dynkin's theorem the following

result is obtained: The square at a continuous Gaussian process satisfies the central limit

theorem in the space of continuous functions."

A joint project with Ron Pyke (University of Washington) led to papers [13,161.

The following is from the abstract of [13]:

"We study the uniform convergence of the quadratic variation of Gaussian processes,
taken over large families of curves in the parameter space. A simple application of our

main result shows that the quadratic variation of the Brownian sheet along all rays issuing

from a point in [0, 1] converges uniformly (with probability one) as long as the meshes
of the partitions defining the quadratic variation do not decrease too slowly. Another

application shows that previous quadratic variation results for Gaussian processes on

[0, 1] actually hold uniformly over large classes of partitioning sets."

One interesting comment to make regarding this work is that it is a nice example

of how the general theory of Gaussian processes on abstract parameter spaces can be
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used to solve a very specific problem related to a very specific random process arising in

Mathematical Statistics. Details are, of course, to be found in the paper.

Finally, there are two papers written by Nathalie Eisenbaum, who spent a year at

the Technion following here doctoral studies at Paris VI, to where she has now returned.
Dr. Eisenbaum was supported, in part by the grant, as a research assistant. Her papers

deal with the interface between Gaussian and Markov processes, particularly via the

"Isomorphism Theorem" of Dynkin, which establishes a close relation between the local
time of a symmetric Markov process and an associated Gaussian process whose covariance

function is given by the Green's function of the Markov process.
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4. PUBLICATIONS UNDER THE GRANT

1. R. J. Adler, An Introduction to Continuity, Extrema, and Related Topics for General

Gaussian Processes, (1990), vii + 160, IMS Lecture Notes-Monograph Series.

2. R. J. Adler, L. D. Brown and K-L Lu, Tests and confidence bands for bivariate
cumulative distribution functions, Communications in Statistics, Simulation and

Computation, 19, 1990, 25-36.
3. R. J. Adler, The net charge process for interacting, signed diffusions. Annals of

Probability, 18, 1990, 602-625.

4. R. J. Adler, M. B. Marcus and J. Zinn, Central limit theorems for the local times of
certain Markov processes and the squares of Gaussian processes. Annals of Proba-
bility, 18, 1126-1140, 1990.

5. N. Eisenbaum, The isomorphism theorem of Dynkin and Ray-Knight theorems, (16
pages, Submitted).

6. N. Eisenbaum, Additivity and strong infinite divisibility of Markov processes, (17
pages, Submitted).

7. R. J. Adler, Fluctuation theory for systems of signed and unsigned particles with
interaction mechanisms based on intersection local times, Advances in Appl. Prob-
ability, 21, 1989, 334-356.

S. R. J. Adler, S. Cambanis and G. Samorodnitsky, On stable Markov processes, S-
tochastic Processes and their Applications, 34, 1990, 1-17.

9. R. J. Adler, R. Feldman and M. Lewin, Intersection local times for infinite systems of
planar Brownian motions and the Brownian density process, Annals of Probability,

19, 192-220, 1991.

10. R. J. Adler and M. Lewin, An evolution equation for the intersection local times for
super processes, Stochastic Analysis, eds. M.T. Barlow and N.H. Bingham, Cam-
bridge University Press, 1991. 1-22.

11. R. J. Adler and M. Lewin, Local time and Tanaka formulae for super Brownian
motion and super stable processes, Stochastic Processes and their Applications, 1991.

(21 pages) In print.

12. R. J. Adler and J. S. Rosen, Intersection local times of all orders for Brownian and
stable density processes - construction, renormalisation, and limit laws, Annals of

Probability, 20, 1992. (48 pages) To appear.

13. R.J. Adler and R. Pyke, Uniform quadratic variation for Gaussian processes. (19

pages) Submitted.

14. T. Gadrich and R.J. Adler, Slepian models for non-stationary Gaussian processes.

(12 pages) Submitted.
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15. R.J. Adler, G. Samorodnitsky and T. Gadrich, The expected number of level cross-

ings for stationary, harmonisable, symmetric, stable processes. (21 pages) Submit-

ted.
16. R.J. Adler and R. Pyke, Brownian scan processes. In preparartion.

17. R.J. Adler, Superprocess local and intersection local times and their corresponding
particle pictures. In preparartion.
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5. CONFERENCES ATTENDED AND PROFESSIONAL VISITS

Conferences.
1. Math Sciences Institute Workshop on Markov Processes in Functional Spaces, Cor-

nell University, May 14-16.
2. The 18th Conference on Stochastic Processes and Their Applications; Madison,

Wisconsin, June 25-July 1.
3. July, 1990: London Mathematical Society Durham Symposium: Stochastic Analy-

sis, Durham, England. Intersection local time for distribution and measure valued
processes, (Invited lecture).

4. August, 1990: Second World Congress of the Bernoulli Society, Uppsala, Sweden.
Random Fields (Session organiser).

5. The 20th Conference on Stochastic Processes and Their Applications; Nahariya,

Israel, June 9-14, 1991. (Chairman of organising committee.)

University visits.

1. Department of Mathematics and Statistics, Carleton University, Ottowa, Canada.
January 22 - Febraury 19, 1989. (Don Dawson, Miklos Csorgo).

2. Department of Statistics, University of California, Berkeley. February 19 - February

26, 1989. (Raisa Epstein, David Donoho).
3. Department of Operations Research, Cornell University, Ithaca. May 11 - May 17,

1989. (Gennady Samorodnitsky, Sidney Resnick).
4. Department of Statistics, University of Rome, Italy. June 14 - June 18, 1989.

(Bruno Bassan, Arnoldo Frigessi, Enzo Orsinger).

5. Department of Mathematics, University of Washington, Seattle. September 8 -
September 30, 1989. (Ron Pyke).

6. Department of Mathematics, University of British Columbia, Vancouver, September

19 - September 20, 1989. (Ed Perkins, John Walsh).

7. Department of Applied Probability and Statistics, University of California, Santa
Barbara. February, 1990, July, 1991. (Raisa Epstein Feldman, Zari Rachev).

Travel costs were met by a combination of AFOSR and Technion funds. When visiting
universities rather than attending conferences, local costs were generally met by the host

institution.
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